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Abstract 
Currenlty, FE meshes form the basic representation for the analysis and visualization of 3D FE 
analysis results. In this case, the triangulations used for visualization purposes are colored in 
accordance with the values issued from the resolution phase. As FE models get larger (hundreds of 
thousands and over), their 3D visualization become more and more difficult on high performance 
graphic workstations and cannot be performed on low cost computers. In the context of collaborative 
engineering, such models can hardly be exploited during digital design reviews (with or without 
immersion into a VR environment) and cannot be attached to emails and digital reports. In addition, 
large FE models reduce the understanding of phenomena since 3D animations and interactive analysis 
on high performance workstations cannot be achieved. 
This paper deals with the problem of blending numerical and geometrical criteria in the decimation 
process of numerical simulation data sets. We propose three different approaches: 

- Compression with priority to the simulation data, 
- Compression based on a blending of geometrical and numerical criteria, 
- Compression with priority to the geometry. 

These approaches are illustrated on real world examples of mechanical phenomena simulations. 



 L. Fine, J-C. Léon, A. Gérussi, G-P. Bonneau  
 

 
 

2

1 Introduction 

This paper deals with the problem of blending numerical and geometrical criteria in the decimation 
process of numerical simulation data sets. Our method relies on two decimation algorithms that can be 
implemented independently of each other. The first is dedicated to the compression of the geometry 
and is based on a unique scalar parameter related to the chordal distance between the initial and the 
simplified model. The second decimation algorithm is dedicated to the numerical data attached to the 
geometry. It performs a wavelet-like decomposition of the numerical data that allows both a good 
approximation of the data on the simplified meshes, and the ability to recover original values when 
inverting the decimation process. 
The main contribution of this paper is to present different ways of blending together the compression 
of the geometry with the compression of the data attached to the geometry. We propose three 
approaches that we think can contribute to the integration of Finite Element (FE) techniques into the 
design process: 

- Compression with priority to the simulation data, 
- Compression based on a blending of geometrical and numerical criteria, 
- Compression with priority to the geometry. 

 
These approaches are illustrated on real world examples of mechanical phenomena simulations. 
Decimation approaches have been largely developed over the past years [1, 2, 3, 4, 5, 6, 7, 8] to set up 
mainly two categories of operators, i.e. vertex removal or edge collapse. In addition, the proposed 
approaches led to different concepts of control over the decimation process using energy criteria [1] or 
bounded deviation [3, 4, 5, 6].  
These criteria and operators have produced different categories of decimators capable of restoring the 
initial shape of an object that has been arbitrarily triangulated. Bounding the deviation between the 
initial and decimated triangulations has appeared critical for many applications in the context of 
mechanical engineering and design. To this end, the approach by Véron and Léon [6, 7] uses a concept 
of error zone attached to each vertex of the initial triangulation to model a discrete envelope of 
variable distance around the object. 
All these categories of approaches are based on the same similar concept of preserving, as much as 
possible, the shape of the initial object. 
Wavelet encoding of numerical data has been extensively applied over the past years. Classical 
wavelet encoding schemes apply only on 1D data or 2D and 3D tensor-product data.  Some 
generalizations have been proposed in the context of Computer Graphics, in order to define wavelet 
encoding scheme for arbitrary topological surface meshes [10,11]. However these approaches apply 
only on a restricted set of surface meshes, and some preprocess transform of the input mesh must be 
done before using these wavelet encoding schemes [12]. In the context of mechanical engineering and 
design, such a preprocess transform is clearly undesirable. The approach by Bonneau and Gerussi  
[13,14] is based on a generalization of the classical multiresolution analysis framework, and allows to 
handle numerical data attached to arbitrary planar or spherical triangular meshes. This approach has 
been extended to allow the case of numerical data attached to faces or vertices of a mesh that is 
decimated by a vertex removal process [15]. 
In the context of scientific visualization of simulation datasets, it is important to provide tools that fit 
into the design flow. This remark applies particularly to the field of simulation of mechanical 
phenomena using a Finite Element (FE) technique and contributes to the integration of FE techniques 
into the design process. Up to now, two distinct needs have been identified in this context: 

- The engineer needs specific approaches to obtain models adapted to visualization capabilities 
of workstations and enabling him (resp. her) to get the best possible understanding of the 
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phenomenon simulated. Currently, the FE models become larger and larger and their 
visualization strictly relies on the straightforward visualization of these models. Even with 
high-end workstations, these models become difficult to visualize and don’t allow the engineer 
to analyze and understand deeply the physical phenomenon because there no possibility of 
animation when transient of modal analyses are performed. As a result, a model dedicated to 
the visualization phase has appeared critical to produce a compressed model that still contains 
the significant information of the simulation while it is significantly compressed. Such a 
model becomes also a basis for co-located collaborative work during digital mock-up reviews 
to provide explanations to non specialist engineers, 

- The engineer needs to collaborate with other engineers of the same skills during the design 
process through distant synchronous or asynchronous work. At present, such type of activity is 
not possible when FE models are large because they can’t be sent through the mail and they 
are compatible with synchronous collaborative tools. Here, again the compression of such FE 
models becomes critical to exchange data over an intranet/internet network. 

As a result, the objective is to present some approaches that lead to compression of simulation datasets 
through the use of control parameters that are compatible with the analysis activity performed by an 
engineer. The compression process should be transparent for the user and hence, automatic to produce 
a visualization model that can be effectively used for the analysis task. 

2 Geometric compression through a decimation process 

The purpose of this section is to review the main features of the geometric decimation process set up to 
perform a compression of a FE model. 

2.1 Vertex and edge categories 

First of all, a FE mesh defines a polyhedron that is often non-manifold; hence, the decimation process 
set up must be able to cope with such models. To this end, the nodes and vertices of the input 
polyhedron are classified in accordance with the following rules. The edges are classified according to: 

- An edge which does not take part in the description of any face is classified as an isolated 
edge, 

- An edge that takes part in the description of one face only is classified as a boundary edge. 
This edge holds for the boundary of a domain topologically equivalent to half a disc, 

- An edge that takes part in the description of two faces only is classified as a surface edge. This 
edge is located in a domain topologically equivalent to a disc, 

- An edge that takes part in the description of more than two faces is classified as a contact 
edge. Such an edge is the common boundary of more than two domains topologically 
equivalent to half discs. 

A vertex is classified according to: 
- A vertex connected to surface edges only is classified as a surface vertex if all the faces 

meeting at that vertex define one surface only, i.e. each vertex is associated with one and only 
one contour polygon) (see Figure 1a). Otherwise, this vertex is classified as an isolated vertex 
(see Figure 1d), 

- A vertex connected to two boundary edges and to surface edges is classified as a boundary 
vertex if all the faces meeting at that vertex define one surface only (see Figure 1b), otherwise 
it is an isolated vertex (see Figure 1e), 

- A vertex connected to at least one contact edge is classified as a contact vertex (see Figure 1c) 
except when it exists a face meeting at that vertex which owns two boundary edges meeting at 
that node. In this last case the vertex is classified as isolated (see Figure 1f), 
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- Finally, when a vertex is connected to more than two boundary edges or at least to one isolated 
edge, it is classified as an isolated vertex (see Figure 1g). 

In order to carry on a brief description of the decimation principle that is used, only the key concepts 
of this principle are described. 
 

 

(a) Surface vertex (b) Boundary vertex (c) Contact vertex

Isolated vertex 

(d) (e) (f) (g)

Caption of edge classifications : surface boundary contact isolated

Caption of vertex classifications :  

{ }741 ,εε=IEL

{ }3211 ,, εεε=FL
{ }4322 ,, εεε=FL

{ }4633 ,, εεε=FL{ }6534 ,, εεε=FL

{ }211 ,εε=BEL

{ }422 ,εε=BEL

{ }463 ,εε=BEL

{ }654 ,εε=BEL

{ }535 ,εε=BEL

{ }316 ,εε=BEL
{ }872 ,εε=IEL7ε

8ε

4ε

2ε
1ε

3ε

6ε
5ε

(h)

 
Figure 1: Illustration of vertex classifications (a to g). Error zones iε associated with the initial vertices 

and dependency lists assigned to faces FiL , boundary edges BEjL  and isolated edges IEkL  (h). 

2.2 Main features of the decimation process 

The approach proposed is based on an iterative vertex removal algorithm. First of all, the edges and 
vertices of the initial polyhedral model are classified in accordance with their local topological 
configuration as described previously. This classification is required to apply the appropriate selection 
criterion and vertex removal operators to each class of vertices. Then, the simplification treatment is 
initialized. A spherical error zone is assigned to each vertex of the initial model. The radius of these 
spheres is set up using values specified by the user and attached to different areas of the object. The set 
of error zones can be understood as a discrete envelope set up around the initial polyhedron where the 
decimated polyhedron must lie. 
In the context of the present application, the radius of the spheres is constant and is the only parameter 
required to initiate the decimation process. 
At each face, an inheritance process of the error zones is initialized to monitor the geometry restoration 
during the simplification process. The restoration criterion used is based on the measure of a geometric 
deviation between the initial and simplified models, i.e. the local chordal distance between the new 
faces and the error zone attached to the vertex removed. Afterwards, the simplification process starts 
and a loop is executed until no more candidate vertices can be removed. Different criteria based on 
discrete curvature approximations [9] are used to select the candidate vertex having the best 
probability of removal. Then an operator adapted to the classification of the candidate vertex is applied 
to create a new geometry from the contour polygon of this vertex, i.e. its star-polygon. To this end, 
different meshing techniques of 3D contour polygons, which take into account an approximation of the 
principal directions of curvature, are used in accordance with the local geometric configuration around 
the vertex to be removed. The geometry restoration criterion is then applied to determine whether the 
vertex can be removed or not. If the geometry of the initial model is correctly restored, the current 
model is updated using the previously created mesh of the 3D contour polygons and the possible 
topologic changes involved by this vertex removal are identified and managed. 
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2.3 Geometry restoration criterion 

The geometric restoration process is based on the error zones assigned to the vertices and on an 
inheritance mechanism of these error zones attached to faces. At first, spherical error zones centered 
on each vertex of the input polyhedral model are generated. The radius of each sphere locally defines 
the maximum deviation accepted between the initial and simplified models and is the only parameter 
required for this process. This model can be either a two-manifold model or a non-manifold one.  
Then, an inheritance process is used to monitor the geometric restoration of the object shape during the 
simplification process. This process is initialized using the input data. A dependency list of error 
zones, containing all the error zones participating to the local restitution of the object geometry, is 
assigned to each face of the model. For each face, its dependency list is initialized with the error zones 
attached to the vertices describing that entity. To complete the geometric restoration control, the same 
concept of dependency lists is also applied to the boundary and isolated edges of the model. Figure 1h 
illustrates the dependency list initializations on a simple initial model containing eight error zones 

iε .At the initialization stage, the error zones assigned to the dependency lists of each entity (face or 
edge) are solely composed of the zones located at their boundary vertices. 
During each vertex removal procedure, the geometric restoration criterion is checked and the potential 
topological changes are managed using the following criteria and rules. The first step of the geometric 
restoration test merges the lists of the error zones of the faces and edges connected to the candidate 
vertex. This list L is created from the error dependency lists associated to the faces FiL , the boundary 
edges BEjL and the isolated edges IEkL  meeting at the candidate vertex. The second step effectively 
tests the newly created re-meshing scheme to ensure that it intersects the error zones of all vertices, 
even the removed ones that are kept by the inheritance process during the simplification. The criterion 
used checks that each error zone lε of the list L previously created intersects at least either one face 

iF  or one boundary edge BjE  or one isolated edge IkE of the newly created geometry, i.e. Ll ∈∀ ε  , 
iF∃  such that { }φ≠∩ li EF  or BjE∃  such that { }φ≠∩ lBj EE  or IkE∃  such that 

{ }φ≠∩ lIk EE . Hence, this criterion is based on sphere-triangle or sphere-edge intersection tests. 
If the shape restoration test is successful, the model is updated. To this end, the newly created re-
meshing scheme is locally inserted into the current model. Moreover, the dependency list of error 
zones assigned to each newly created (by the meshing process) face, boundary edge and isolated edge 
must be updated too. This updating process is carried out from the list L of error zones previously 
defined. Each error zone iε of this list is added to the dependency list FjL  of the newly created face if 

it intersects this face jF . In the same way, the error zone iε  is added to the dependency list BEkL  

(respectively IElL ) of the newly created boundary edge kBE  (resp. isolated edge lIE ) if it intersects 
this edge. 

3 Wavelet compression 

This section very briefly describes the wavelet-like scheme that deals with the numerical data attached 
to the meshes. This scheme is based on previous works [13,14] about the simplification of piecewise 
constant or linear data on irregular planar or spherical meshes. The basic idea is to use vertex removal 
to simplify the mesh, and to best approximate the numerical data on the simplified mesh. The 
numerical error arising during this mapping process is stored in detail coefficients, that have been 
shown to generalize wavelet coefficients in some sense [13]. Computing the numerical data on the 
simplified mesh, and the detail coefficients, involves the evaluation of scalar products between 
piecewise constant or linear functions on the initial and the simplified mesh. The results of [13,14] 
have later been generalized in [15] in order to handle arbitrary surface meshes.  To this end, a local 
planar projection is performed during each vertex removal (see figure 2a), and the results of [13,14] 
can be applied locally on the projected planar mesh. 
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In the context of the present paper, an important feature of this wavelet-like decomposition is that each 
removed vertex is associated to a scalar coefficient that measures the numerical error arising from its 
removal. This error coefficient associated to each removed vertex can then be used to blend geometric 
and numerical criteria during the decimation process. 

4 Compression with priority to the simulation data 

Because the purpose of the visualization model can be considered as the basis of the analysis process 
of a physical phenomenon, the engineer is interested in preserving roughly the shape of the initial 
mesh and then, concentrates on the values of the numerical simulation process and the areas where 
critical values are located. 
In the context of mechanical engineering, this principle is set up using conceptually different areas. 
These areas are identified automatically from the numerical simulation values assigned at faces of the 
FE mesh. At present, the current approach uses constant values at each face of the FE mesh. 
Prior to any visualization, the engineer can access the histogram of simulation values using the file 
output by the computation phase. According to Figure 2b, the values obtained are V, [ ]maxmin ,VVV ∈ . 
Then, the engineer can specify a first threshold value maxS , maxmax VS < such that in the interval 
] ]maxmax ,VS  the simulation values should not altered by the decimation process to enable a rigorous 
analysis of the results. This interval defines the “area of interest” for the engineer and no compression 
should take place in this area. Therefore, this area is not modified from the geometric point of view as 
well as from the simulation one. 
In addition, the engineer can specify a second threshold value minS , maxmin SS < , to define new areas 
where the decimation process will take place as a multi-criteria process. At present, the approximation 
criterion for the simulation data located around a candidate vertex is expressed as (see Figure 2c): 

 

Analysis area

Area of weak importance

Simulation 
valuesVmaxVmin 

Values 
assigned to the 
visualization 

model 

Transition area

Smin Smax 

Emax 
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jj xF ,
kk xF ,

ll xF , xFj ′′ ,  
xFk ′′ ,  

a) b) c) 

 
Figure 2: a) Local projection during vertex removal. b) Threshold values of simulation data used to 

control the compression process. c)Approximation of simulation data at a candidate vertex. 
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where jx and jA  are the simulation value and the area of the face jF and jA′  is the area of the face 

jF ′ obtained after the vertex removal operation. x ′ is the constant value assigned to each face jF ′  
obtained when the vertex has been removed and x ′  can be obtained straightforwardly from eq. 1. 
Within the transition area depicted on Figure 4, the simulation values attached to the visualization 
model must be kept into the interval [ ])(),( VEVVEV +− , [ ]maxmin , SSV ∈  where the function )(VE is 
linear within the transition area. Hence, the transition area is characterized by the deviation over the 
simulation that the engineer can accept in the interval [ ]maxmin , SS . Such a behaviour is effectively 
described by two parameters minE and maxE (see Figure 2b with a configuration where 0min =E ). 
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As a result, the multi-criteria decimation approach is applied as follows: 
- Vertices are selected using a geometric criterion based on discrete curvatures to ensure the 

preservation of the object shape, 
- The contour of the vertex removed is replaced by a new set of faces with new simulation data 

attached to these faces, 
- The geometry restoration criterion is checked (see the inheritance process described at section 

2.2). If the new triangulation lies within the error zones of radius gε  the remeshing scheme is 
validated otherwise this vertex is not removed, 

- The approximation criterion for the simulation data is checked. If this approximation lies in 
the interval [ ])(),( initinitinitinit VEVVEV +− , this criterion is satisfied and the candidate vertex is 
effectively removed otherwise it is not. 

Finally, a third area is considered and designates a region of weak interest for the engineer (areas of 
low level of stress, …). In this area [ [minmin , SVV ∈ , the decimation process is applied with the 
geometric deviation criterion gε  only and the simulation data are propagated without any further 
constraint in accordance to the process expressed by eq. 1. 
As a result, the control parameters set up by the engineer are: gε , minS , maxS , maxE  and eventually minE  
if a non-zero value is wanted. All these parameters are strictly based on the results of the simulation 
process and easily set up from the histogram of the results. Hence the compression is adaptative over 
the triangulation and driven by the simulation results. The gε  parameter is also easily set by the 
engineer since it characterizes the chordal deviation between the initial mesh and the final 
triangulation. 
To illustrate the effect of the simulation driven approach to set the control parameters, an example is 
provided at Figure 3 concerning a car body subjected to a modal analysis. This model is complex and 
non-manifold. It does not incorporate isolated edges and vertices but contact ones only. During the 
decimation process no topological change has been allowed. The simulation data visualized are the 
nodal displacements of the FE mesh. The mode displayed at Figure 3 is local to the beam placed under 
the roof. Figure 4 clearly shows the effect of the simulation data driven compression where red and 
yellow areas are critical for the analysis and dark blue ones are not relevant for the engineer. 

 

 
Figure 3: FE model of car body produced by a modal analysis (238 945 faces) (Courtesy Renault). 

To illustrate more clearly the effect of the transition area, another vibration mode of the same structure 
is provided at Figure 5a. Here, significant displacement amplitudes are spread all over the structure 
and the mode is more global. Again, the red and yellow areas are kept unchanged and the green to 
cyan area reflect the transition area specified by the engineer. Figures 5b and 6 illustrate how the 
triangulation progressively increases in size as the colors move from green to cyan. The dark blue area 
is still the area where the geometric criterion only is active to validate the decimation process. 
The above process is entirely automatic after the engineer has specified the thresholds and  value and 
produces a significant compression of the model while preserving the meaningful information for the 
analysis phase carried out by the engineer. 
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a) b)

 
Figure 4: a) Visualization model of the vibration mode of the car body at Figure 3 (43 791 faces).  

gε =1cm. b) Detailed area of the visualization model. 

a) b) 

 

Figure 5: FE model of car body structure produced by a modal analysis (238 945 faces). The vibration 
mode is different from that of Figure 4. Visualization model of the mode of the car body (62 282 

faces). gε =1cm (Courtesy Renault). 
 

 
Figure 6: FE model (top) (238 945 faces) and visualization model (bottom) (62 282 faces) of a car 

body structure produced by a modal analysis (Courtesy Renault). 

5 Compression through a weighted approach 

In this section we describe the weighted approach for blending the compression of the geometry with 
the compression of the numerical data attached to the geometry. 
In a numerical simulation data set, there is no relation between the complexity of the geometry and the 
regularity of the numerical data. If the geometry and the numerical values do not vary much in an area, 
then things are simple: this area can be simplified without perturbing much the initial data. If the 
geometry and the numerical data are both complex, then it is obvious that this area should not be 
modified at all. But if the geometry is complex and the numerical values are almost constant, or if the 
geometry is almost planar and the numerical values have a complex behavior, then one has to decide 
which way to go: either simplify the area, or  do not modify it. Suppose for example that some part of 
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the mesh is exactly planar. Then a decimation based solely on the geometric criterion would remove 
all interior vertices in this area, thus resulting in a very poor quality of the numerical values inside this 
area. 
In this section we propose to blend the geometric and the numerical criteria through a weighted 
approach. Both criteria are based on a scalar attached to each vertex. For the geometric decimation, 
this scalar is related to the error zone at that vertex. For the numerical simplification, this scalar is 
related to the error arising from the best-approximation mapping performed during the vertex removal. 
We can use an affine combination of these geometric and numerical criteria in order to decide in which 
order the vertices should be removed. Depending on the weights in this affine combination, the 
geometry or the numerical behavior of the data set will be preferred. 
Figure 7 shows an example of two different decimations for two choices of weights. Notice in (b) how 
the numerical data is very poorly reproduced in planar areas of the object. After normalization of the 
error coefficients, we choose in (c) the weights 2/3, 1/3 respectively for the geometric and the 
numerical criteria. Notice how the numerical values are much better approximated, while the geometry 
is poorly reproduced, in particular around the cylindrical holes, or along the sharp edges. 
 

a) b) c) 

 
Figure 7: Bracket data set. (a) initial mesh, 50000 triangles; (b) decimation based on the geometric 

criteria, 3000 vertices; (c) decimation with weights 2/3 for the geometric criteria and 1/3 for the 
numerical criteria, 3000 vertices. 

6 Compression based on a priority to the geometric criterion 

As described at section 4, the simulation data driven compression of the FE model involves a concept 
of transition area where a multi-criteria decimation approach is applied. This decimation process sets 
the priority to the geometric criterion in the sense that the remeshing scheme is solely based on 
geometric criteria (discrete curvature criteria) and the validation of the remeshed area is subjected to 
the geometry restoration criterion first and to the restoration criterion for the simulation data 
afterwards. As depicted through the examples of Figures 3-7 of sections 4 and 5, the model 
compression based on priority to geometry or to a weighted relationship between simulation data and 
geometry leads to significantly different results. Preserving the object aspect can be obtained through a 
unique control parameter,  , and produces a high compression rate of the FE model. The principle of 
the decimation approach allows the algorithm to use a variable distance between the initial FE model 
and the decimated model using error zones of variable radius. The radius variation could be indexed 
on the simulation values to provide a higher compression rate in areas of weak interest for the 
engineer. Such configurations have been already investigated for FE models preparation [9]. 

7 Conclusion 

A set of approaches has been described and analyzed to perform the compression of FE simulation 
results. Simulation data driven compression has demonstrated its interest and applicability in industrial 
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configurations. Its adaptative behavior is an important factor to obtain automatically a meaningful 
visualization model from the histogram of the simulation process. 
The weighted approach is based on an affine combination of a geometric error and a numerical error. 
Depending on the weights, the decimation will reproduce in priority either the geometry or the 
numerical data attached to the geometry. 
The compression based on a priority to the geometric criterion highlights its importance in a context 
where the preservation of the initial geometry of the object seems critical. Effectively, it is not clear at 
present into which extent an engineer can feel comfortable to perform an analysis on a visualization 
model where the shape has significantly changed in areas where the simulation data is usually 
considered as critical by the engineer. Such a configuration needs to be investigated further. 
Future work will focus on incorporating effectively the wavelet compression in the approaches 
described in sections 4 and 6, in order to improve the FE model compression by providing a more 
efficient transfer of simulation data during the decimation process. The use of textures is also direction 
of investigation to improve the compression of the model, apply the wavelet approach over a large part 
of the model and decouple the geometric decimation process from the simulation data transfer. 
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